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Abstract: A method to obtain the state matrix of an arbitrary linear
homogeneous medium excited by a plane wave is proposed. The
approach is based on projections on the eigenspace of the governing
equations matrix. It is an alternative to manually obtaining a linearly
independent set of equations by combining the governing equations.
The resulting matrix has been validated against previously published
derivations for an anisotropic poroelastic medium.
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1. State form of the governing equations

The dynamic behaviour of any homogeneous linear physical medium, under harmonic
excitation x, can be modelled by a general system of first-order equations in a
Cartesian coordinate system xyz,

Mþ Ax
@

@x
þ Ay

@

@y
þ Az

@

@z

� �
w x; y; zð Þ eıxt ¼ 0; (1)

where w is a vector of physical field variables used in the modelling. The size of the
differential system is denoted by m which depends on the medium and the chosen for-
mulation to represent its physics. For a homogeneous medium the matrices M; Ax; Ay,
and Az in Eq. (1) are constant, frequency dependent and, in general, complex (to take
dissipation into account). Their expressions are straightforward to derive from first
principles, i.e., from the involved conservation relations.

It is assumed that the medium is a constituent of a multilayer system with
interfaces normal to the z direction and that this system is excited by a plane wave
with prescribed wavenumbers kx, ky. Partial differentiation with respect to coordinates
x and y become algebraic operations such that Eq. (1) may be rewritten as

Rþ Az
@

@z

� �
w zð Þ eı xt�kxx�kyyð Þ ¼ 0; (2)

where

R ¼M� ıkxAx � ıkyAy: (3)

Hence, w depends on z and only the partial derivation with respect to
z remains. The rank of the system in Eq. (2) is n, with n<m, as a consequence of the
field variables in w(z) and the plane wave excitation.

In the following, the common spatial and time dependence eıðxt�kxx�kyyÞ is
omitted.

Out of the m field amplitudes in w(z), only n is linearly independent. This lin-
ear dependence among the fields in w(z) is partially introduced by the spatial depen-
dence prescribed by the wavenumbers kx, ky. To account for this, a partitioning of
w(z) is a priori introduced, as
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wðzÞ ¼ sðzÞ
s0ðzÞ

� �
: (4)

s(z) is a state vector of the system of length n. The actual partitioning in the previous
equation (i.e., the choice of the variables which form the state vector), is trivial for
most media, as the components in s(z) are those required to establish the coupling rela-
tions at the interfaces of the medium. Examples of state vectors for different applica-
tions may be found in the literature.1–3 In particular, Eqs. (19) and (20) in Brouard
et al.4 present the state vector for isotropic poroelastic media for two different material
models. In the case of an anisotropic porous medium, Eqs. (21) and (22) in Parra
Martinez et al.5 present the state vector for the Biot model in the fus; utg representa-
tion, illustrating the partitioning in Eq. (4).

The evolution of s(z) can be rewritten in the form of a state space
representation,6–8

@

@z
s zð Þ ¼ �a s zð Þ; (5)

where a is referred to as the state matrix. In a recent paper,5 the authors proposed a
method to model the acoustics of fully anisotropic poroelastic multilayered systems. A
crucial step in the derivation was to determine the state matrix a, and was shown to
involve a succession of tedious manipulations of the governing equations. Although
that approach did not involve any intrinsic difficulties, such a manipulation is only
possible on a case-by-case basis.

Here, an alternative, systematic method for determining a is proposed. The
key advantage is that it avoids manual rearrangements, using as inputs the R and Az
matrices in Eq. (2). Thus, it provides not only a way to check the previously proposed
method but also its general form allows for any linear homogeneous physical system
to be treated, and is hence not limited to porous materials per se.

2. Derivation of the state matrix

The generalised un-symmetric eigenvalue problem associated to R and Az can be writ-
ten as

Az ¼ RUKW; W ¼ U�1; (6)

where K is the diagonal matrix of m eigenvalues and U is a matrix of eigenvectors of
size (m�m), corresponding to Eq. (6). Due to the rank deficiency, q ¼ m� n eigenval-
ues in K are equal to zero. Thus, reordering the eigenvectors such that the first n col-
umns in U and the first n rows in W correspond to the non-zero eigenvalues yields

K ¼
Ke 0

0 0

� �
; U ¼ ½UeU0�; W ¼

We

W0

" #
; (7)

where the dimension of Ke is ðn� nÞ; Ue is ðm� nÞ; We is ðn�mÞ; U0 is ðm� qÞ, and
W0 is ðq�mÞ. Considering Eq. (7), Eq. (2) reads

R Im þUKW
@

@z

� �
w zð Þ ¼ 0; (8)

where Im is the identity matrix of size m. Equation (8) may be simplified due to the
zero eigenvalues

R Im þUeKeWe
@

@z

� �
w zð Þ ¼ 0: (9)

This system can be split into

Re Im þ UeKeWe
@

@z

� �
w zð Þ ¼ 0; R0 Im þ UeKeWe

@

@z

� �
w zð Þ ¼ 0 (10)

with

Re ¼ We R; R0 ¼ W0 R: (11)

The first system in Eq. (10) is considered in order to cancel the partial derivative
over z,

We
@

@z
w zð Þ ¼ � ReUeKeð Þ�1Re w zð Þ: (12)
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This expression can be introduced in the second system in Eq. (10),

R0ðIm �UeKeðReUeKeÞ�1ReÞwðzÞ ¼ 0: (13)

This leads to a homogenous linear system on w(z) that allows one to identify a relation
between s(z) and s0(z). The latter may be partitioned into

½B0 Bs �wðzÞ ¼ 0; (14)

where Bs has dimensions (q� n) and B0 has dimensions (q� q).
Combining Eqs. (4) and (14) and solving for s0(z) leads to

s0ðzÞ ¼ �B�1
0 Bs sðzÞ: (15)

Through Eq. (15), w(z) may be expressed as a function of the state vector s(z),

wðzÞ ¼ T sðzÞ; (16)

with

T ¼ In

�B�1
0 Bs

� �
; (17)

where In is the identity matrix of size n.
After insertion of Eq. (16) into Eq. (12), the partial derivative of s(z) with

respect to z is obtained as

@

@z
s zð Þ ¼ � ReUeKeWeTð Þ�1ReT s zð Þ: (18)

Thus, by inspection, the matrix a in Eq. (5) is identified and rewritten as

a ¼ ðWeAzTÞ�1WeRT: (19)

3. Conclusion

An alternative method to compute the state matrix of a linear homogeneous medium
under a plane wave excitation is presented. The approach is based on an eigenvector
and eigenvalue decomposition of a system of first order linear equations. By isolating
the non-zero eigenvalues and eigenvectors, the state matrix is derived through a series
of projections on the computed eigenvectors.

As a validation, the terms of the state matrix computed using the proposed
method have been compared to the results in Parra Martinez et al.,5 and found to be
equal within the numerical precision.

Given the generality of the proposed method, any type of linear homogeneous
medium, including arbitrary anisotropic properties and multiphysics interactions, may
be treated.
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